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Performance of different synchronization measures in real data: A case study
on electroencephalographic signals
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We study the synchronization between left and right hemisphere rat electroencephalographic~EEG! channels
by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mu-
tual information, cross correlation, and the coherence function. In passing we show a close relation between
two recently proposed phase synchronization measures and we extend the definition of one of them. In three
typical examples we observe that except mutual information, all these measures give a useful quantification
that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the
same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data.
Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical
relevance.
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I. INTRODUCTION

The concept of synchronization goes back to the obse
tion of interactions between two pendulum clocks by Hu
gens. Synchronization of oscillatory systems has been wid
studied but it was not until recently that synchronization b
tween chaotic motions received attention. A first push in t
direction was the observation of identical synchronization
chaotic systems@1–4#. But more interesting has been th
idea of a ‘‘generalized synchronization’’ relationship as
mapping between nonidentical systems, and the further
posal by Rulkovet al. @5# of a topological method to quan
tify it. The work of Rulkov and co-workers indeed triggere
a number of studies applying the concept of generalized s
chronization to real data. One of these applications is to
study of electroencephalographic~EEG! signals, where syn-
chronization phenomena have been increasingly recogn
as a key feature for establishing the communication betw
different regions of the brain@6#, and pathological synchro
nization as a main mechanism responsible for an epile
seizure@7#. Since many features of EEG signals cannot
generated by linear models, it is generally argued that n
linear measures are likely to give more information than
one obtained with conventional linear approaches.

In a study dealing with EEG signals, Schiff and c
workers@8# applied a synchronization measure similar to t
one defined in Ref.@5# to the study of data from motoneu
rons within a spinal cord pool. More recently, nonlinear sy
chronization measures were used for the analysis of E
data from epileptic patients with the main goal of localizi
the epileptogenic zone and of predicting the seizure on
@9–11#. These results, of course, have a clear clinical r
evance. Arnhold and co-workers@11# proposed a robust mea
sure (S), a variant of which (H), already mentioned by thes
authors, has been studied in detail in Ref.@12#. These last
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two measures of interdependence, together with a new m
sure~N! to be defined, will be further studied in this pape

The previous papers give convincing arguments in fa
of using nonlinear interdependences, which in most ca
were illustrated with examples using chaotic toy mode
However, it still remains an open question whether this a
holds true for real data. In this paper we therefore address
point of whether nonlinear measures give a relevant con
bution to the study of synchronization in electroencepha
graphic~EEG! signals@13#. In particular, we will show with
three typical EEG examples~see Fig. 1! how nonlinear inter-
dependence measures can disclose information difficul
obtain by visual inspection. Although the data are EEG
cordings from rats, their main features are common to hum
EEG. Moreover, results should not be restricted to EEG d
and should also be valuable to the study of synchroniza
of other signals. For comparison purposes, we will also st
phase synchronization measures as defined from the Hi
transform@14# and from the wavelet transform@15#, which
had been recently applied to the study of EEG signals@16–
18#. Moreover, we will also compare these results with t
ones obtained with more conventional measures of sync
nization, such as the cross correlation, the coherence f
tion, and the mutual information.

This paper is organized as follows. In Sec. II we defi
the synchronization measures to be used. In particular
Sec. II A we define the linear cross-correlation and the
herence function, while in Sec. II B we describe the thr
measures of nonlinear interdependence. The mutual infor
tion is defined in Sec. II C, whereas Sec. II D is dedicated
the description of phase synchronization measures with
phases defined from a Hilbert transform. Very close to th
last measures are the ones described in Sec. II E but in
case the phases are defined from the wavelet transform
nally, in Sec. II F we show the relation between these t
phase synchronization approaches. Details of the data se
be analyzed are disclosed in Sec. III. In Sec. IV we descr
the results obtained by applying the different synchronizat
©2002 The American Physical Society03-1
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FIG. 1. Three rat EEG signals from right an
left cortical intracranial electrodes. For a bett
visualization, left signals are plotted with an of
set.
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measures to these data sets. Finally, in Sec. V we presen
conclusions.

II. SYNCHRONIZATION MEASURES

In the following, unless further specified, we shall use
notion of synchronization in a very loose sense. Thus i
more or less synonymous with interdependence or~strong!
correlation.

A. Linear measures of synchronization

Let us suppose we have two simultaneously measu
discrete univariate time seriesxn andyn , n51, . . . ,N. The
most commonly used measure of their synchronization is
cross-correlation function defined as

cxy~t!5
1

N2t (
i 51

N2t S xi2 x̄

sx
D S yi 1t2 ȳ

sy
D , ~1!

where x̄ andsx denote mean and variance, andt is a time
lag. The cross correlation gives a measure of the linear s
04190
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chronization betweenx andy. Its absolute value ranges from
zero ~no synchronization! to 1 ~maximum synchronization!
and it is symmetric:cxy(t)5cyx(t).

The sample cross spectrum is defined as the Fourier tr
form of the cross correlation or, via the Fourier convoluti
theorem, as

Cxy~v!5~Fx!~v!~Fy!* ~v!, ~2!

where (Fx) is the Fourier transform ofx, v are the discrete
frequencies (2N/2,v,N/2) and * means complex conju
gation. For details of the implementation, see Sec. IV A. T
cross spectrum̂Cxy(w)& is a complex number whose no
malized amplitude

Gxy~v!5
u^Cxy~w!&u

A^Cxx~w!&A^Cyy~w!&
, ~3!

is called the coherence function and gives a measure of
linear synchronization betweenx andy as a function of the
frequencyv. This measure is very useful when synchroniz
3-2
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PERFORMANCE OF DIFFERENT SYNCHRONIZATION . . . PHYSICAL REVIEW E65 041903
tion is limited to some particular frequency band, as it
usually the case in EEG signals~see Ref.@19# for a review!.

B. Nonlinear interdependences

From time series measured in two systemsx andy, let us
reconstruct delay vectors@20# xn5(xn , . . . ,xn2(m21)t) and
yn5(yn , . . . ,yn2(m21)t), wheren51, . . .N, m is the em-
bedding dimension, andt denotes the time lag. Letr n, j and
sn, j , j 51, . . . ,k, denote the time indices of thek nearest
neighbors ofxn andyn , respectively.

For eachxn , the mean squared Euclidean distance to itk
neighbors is defined as

Rn
(k)~X!5

1

k (
j 51

k

~xn2xr n, j
!2 ~4!

and theY-conditioned mean squared Euclidean distance
defined by replacing the nearest neighbors by the equal
partners of the closest neighbors ofyn ~see Fig. 2!,

Rn
(k)~XuY!5

1

k (
j 51

k

~xn2xsn, j
!2. ~5!

FIG. 2. Basic idea of the nonlinear interdependence measu
The size of the neighborhood in one of the systems, sayX, is com-
pared with the size of its mapping in the other system. The exam
shows a Lorenz system driven by a Ro¨ssler with zero coupling
~upper case! and with strong coupling~lower case!. Below each
attractor, the corresponding time series is shown. The (XuY) inter-
dependences are calculated in the same way, starting with a n
borhood inY. For details see Refs.@11,12#.
04190
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If the point cloud $xn% has an average squared radi
R(X)5(1/N)(n51

N Rn
(N21)(X), then Rn

(k)(XuY)'Rn
(k)(X)

!R(X) if the systems are strongly correlated, whi
Rn

(k)(XuY)'R(X)@R(k)(X) if they are independent. Ac
cordingly, we can define an interdependence meas
S(k)(XuY) @11# as

S(k)~XuY!5
1

N (
n51

N Rn
(k)~X!

Rn
(k)~XuY!

. ~6!

SinceRn
(k)(XuY)>Rn

(k)(X) by construction, we have

0,S(k)~XuY!<1. ~7!

Low values ofS(k)(XuY) indicate independence betweenX
andY, while high values indicate synchronization@reaching
maximum whenS(k)(XuY)→1#.

Following Refs.@11,12# we define another nonlinear in
terdependence measureH (k)(XuY) as

H (k)~XuY!5
1

N (
n51

N

log
Rn~X!

Rn
(k)~XuY!

. ~8!

This is zero ifX andY are completely independent, while
is positive if nearness inY implies also nearness inX for
equal time partners. It would be negative if close pairs inY
would correspond mainly to distant pairs inX. This is very
unlikely but not impossible. ThereforeH (k)(XuY)50 sug-
gests thatX and Y are independent, but does not prove
This is one main difference betweenH (k)(XuY) and the mu-
tual information, to be defined in Sec. II C. The latter
strictly positive wheneverX andY are not completely inde-
pendent. As a consequence, mutual information is quadr
in the correlationP(X,Y)2P(X)P(Y) for weak correlations
(P are here probability distributions!, while H (k)(XuY) is
linear. ThusH (k)(XuY) is more sensitive to weak depen
dences which might make it useful in applications. Also,
should be easier to estimate than mutual informations wh
are notoriously hard to estimate reliably as we will see la

In a previous study with coupled chaotic systems@12#, H
was more robust against noise and easier to interpret thaS,
but with the drawback that it is not normalized. Therefore
propose a new measureN(XuY) using also a diffeent way o
averaging,

N(k)~XuY!5
1

N (
n51

N Rn~X!2Rn
(k)~XuY!

Rn~X!
, ~9!

which is normalized~but as in the case ofH, it can be
slightly negative! and in principle more robust thanS.

The opposite interdependencesS(YuX), H(YuX), and
N(YuX) are defined in complete analogy and they are
general not equal toS(XuY), H(XuY), andN(XuY), respec-
tively. The asymmetry ofS, H, andN is the main advantage
over other nonlinear measures such as the mutual infor
tion and the phase synchronizations defined in Secs. II D
II E. This asymmetry can give information about drive
response relationships@11,12,21#, but can also reflect the dif
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QUIAN QUIROGA, KRASKOV, KREUZ, AND GRASSBERGER PHYSICAL REVIEW E65 041903
ferent dynamical properties of each data@11,12#. To address
this point we will compare results with synchronization va
ues obtained from time shifted signals used as surrogate

Figure 2 illustrates the idea of how the nonlinear interd
pendence measures work. Let us consider a Lorenz a
Rössler system that are independent~upper case, no cou
pling! and a second case with the Ro¨ssler driving the Lorenz
via a strong coupling~lower plot!. For a detailed study o
synchronization between these systems, refer to Ref.@12#.
Given a cloud of points characterizing a neighborhood o
point in one of the attractors, sayX, we see how this map
into the other system (Y). For synchronized systems~lower
plot!, the point cloud inY will still be in a small neighbor-
hood. On the other hand, for independent systems~upper
plot!, the points inY will most likely be spread over the
attractor~upper plot!. In fact, the three measures describedS,
H, andN are just different ways of normalizing these ratio
distances.

C. Mutual information

The previous measures of synchronization were base
similarities in the time and frequency domain~Sec. II A! or
on similarities in a phase space~Sec. II B!. In this section we
describe an approach to measure synchronization by m
of information-theoretic concepts. Let us suppose we hav
discrete random variableX with M possible outcomes
X1 , . . . ,XM , obtained, e.g., by a partition ofX into M bins.
Each outcome has a probabilitypi ,i 51, . . . ,M , with pi
>0; i and(pi51. A first estimate is to considerpi5ni /N,
whereni is the number of occurrences ofXi afterN samples.
From this set of probabilities the Shannon entropy is defi
as

I ~X!52(
i 51

M

pi ln pi ~10!

The Shannon entropy is positive and measures the infor
tion content ofX, in bits, if the logarithm is taken with bas
2. When finite samplesN are considered, the naive definitio
pi5ni /N may not be appropriate. Grassberger@22# intro-
duced a series of correction terms which are asymptoti
1/N. The first and most important term essentially gives

I ~X!'(
i

ni

N
@ ln N2C~ni !#, ~11!

with C(x)5d ln G(x)/dx' ln x21/2x for largex.
Let us now suppose we have a second discrete ran

variableY, whose degree of synchronization withX we want
to measure. The joint entropy is defined as

I ~X,Y!52(
i , j

pi j
XY ln pi j

XY , ~12!

wherepi j
XY is the joint probability ofX5Xi and Y5Yj . If

the systems are independent we havepi j
XY5pi

X
•pj

Y and then,
I (X,Y)5I (X)1I (Y). Thus the mutual information betwee
X andY is defined as
04190
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MI ~X,Y!5I ~X!1I ~Y!2I ~X,Y!, ~13!

which indicates the amount of information ofX we obtain by
knowing Y and vice versa. IfX and Y are independent
MI( X,Y)50 and otherwise, it will take positive values wit
a maximum of MI(X,X)5I (X) for identical signals. Note
also that MI is symmetric, i.e., MI(X,Y)5MI( Y,X).
Schreiber extended the concept of MI and defined atransfer
entropy@23#, which has the main advantage of being asy
metric and can in principle distinguish driver-response re
tionships. Another asymmetric measure based on the MI
been proposed by Palus@24#.

Mutual information can also be regarded as a Kullba
Leibler entropy@25,26#, which is an entropy measure of th
similarity between two probability distributions. To illustrat
this, we rewrite Eq.~13! in the form

MI ~X,Y!5( pi j
XY ln

pi j
XY

pi
X
•pj

Y
~14!

Then, considering a probability distributionqi j
XY5pi

X
•pj

Y

~which is the correct probability distribution if the system
are independent!, Eq. ~14! is a Kullback-Leibler entropy and
measures the difference between the probability distributi
pi j

XY and qi j
XY @27#. In other words, MI(X,Y) measures how

different is the true joint probability distributionpi j
XY from

another in which independence betweenX andY is assumed.
We previously mentioned that eachpi can be obtained by

a partition ofX. In our case,X is the space of time-delay
vectorsxn as in Sec. II B. In principle, we can calculatepi by
box counting. But it was shown in Refs.@28,29# that the
Shannon entropies@Eq. ~10!# can be calculated from the firs
order correlation integralC1(X,d), which gives more accu-
rate results@29,27,30#. Thus, instead of calculating probabil
ties within boxes of a fixed grid with sidelengthd, we com-
pute probabilities within neighborhoods of a certain rad
d/2 around each point@29#. Therefore, we have

I ~X;d!52
1

N (
i 51

N

ln pi ~15!

with pi.(ni /N),ni5( jQ(d/22ixi2xj i) andN the number
of embedding vectors. In this case, we can also introd
finite sample corrections which give@22#

I ~X;d!52
1

N (
i 51

N

@C~ni11!2 ln N# ~16!

D. Phase synchronization from the Hilbert transform

Given a univariate measurementx(t) ~with continuoust!
we first define the analytic signalZx(t)5x(t)1 i x̃(t)

5Ax
H(t)eifx

H(t), where x̃(t) is the Hilbert transform ofx(t)
@14#,

x̃~ t ![~Hx!~ t !5
1

p
PE

2`

1`x~ t8!

t2t8
dt8 ~17!
3-4
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PERFORMANCE OF DIFFERENT SYNCHRONIZATION . . . PHYSICAL REVIEW E65 041903
~P means the Cauchy principal value!. Analogously, we de-
fine Ay

H andfy
H from y(t).1 We say that thex andy aren:m

synchronized, if the (n,m) phase difference of their analyti
signals,fxy

H (t)[nfx
H(t)2mfy

H(t), with n,m some integers,
remains bounded for allt. Thus we define a phase synchr
nization index as@31,17#

gH[u^eifxy
H (t)& tu5A^cosfxy

H ~ t !& t
21^sinfxy

H ~ t !& t
2 ~18!

~brackets denote average over time!. By construction,gH
will be zero if the phases are not synchronized at all and
be one when the phase difference is constant~perfect syn-
chronization!. The key feature ofgH is that it is only sensi-
tive to phases, irrespective of the amplitude of each sig
This feature has been illustrated in Ref.@14# and following
papers~see Ref.@31#! with bidirectionally coupled Ro¨ssler
systems. Another important feature ofgH is that it is param-
eter free. However, if the signals to be analyzed hav
broadband or a multimodal spectrum, then the definition
the phase can be troublesome and prefiltering of the sig
might be necessary. Of course, it should be checked tha
filter to be used does not introduce phase distortions.

Tass and co-workers@16# defined another phase synchr
nization measure from the Shannon entropy of the distri
tion of fxy

H (t). The range off85fxy
H mod 2p is first divided

into M bins. Letpk be the probability thatf8 is in the bink
at any random time. Then,

gH-Sh5
Smax2S

Smax
, S52 (

k51

M

pk• lnpk ~19!

andSmax5 ln M. It ranges from zero for a uniform distribu
tion of fxy

H , to one if the distribution is a delta function. Th
advantage overgH is that gH can underestimate phase sy
chronizations when the distribution offxy

H has more than one
peak. This corresponds to the case where the phase d
ence remains fairly stable but occasionally ‘‘jumps’’ betwe
different values@39#. Although the signals are synchronize
~except at the times of the jumps!, the phasesfxy

H (t) can
cancel in the time average of Eq.~18!, thus giving a low
gH .2 We also calculated another quantification proposed
Ref. @16# defined from conditional probabilities betwee
fx

H(t) andfy
H(t), but results were very similar to those o

tained withgH and will be not further reported.

E. Phase synchronization from the wavelet transform

Another phase synchronization measure defined from
wavelet transform (gW) has been recently introduced b

1In the actual implementation, wherex(t) and y(t) are only

known at discrete times, we calculatex̃n from the Fourier trans-
form, as described in Ref.@14#.

2A multimodal distribution of the phases can also appear if
look, e.g., for a 1:1 synchronization but the real relationship is1:2.
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Lachauxet al. @15,33#. It is very similar to gH , the only
difference being that the phases are calculated by convol
each signal with a complex wavelet functionC(t) @32#,

C~ t !5~eiv0t2e2v0
2s2/2!•e2t2/2s2

, ~20!

wherew0 is the center frequency of the wavelet ands de-
termines its rate of decay~and by the uncertainty principle
its frequency span!.3

The convolution ofx(t) and y(t) with C(t) gives two
complex time series of wavelet coefficients,

Wx~ t !5~C+x!(t)5E C~ t8!x~ t82t !dt85Ax
W~ t !•eifx

W(t),

~21!

@Wy(t) is defined in the same way fromy(t)#, from which
we can again calculate the phase differencesfxy

W(t)
[fx

W(t)2fy
W(t) and define a phase synchronization fac

(gW) as in Eq.~18!, or from the Shannon entropy of th
distribution offxy

W(t) (gW-Sh) as in Eq.~19!.
The main difference with the measures defined by us

the Hilbert transform is that a central frequencyv0 and a
width s for the wavelet function should be chosen, a
thereforegW andgW-Sh will be sensitive only to phase syn
chronizations in a certain frequency band. In particular, D
Shazeret al. @34# recently analyzed phase synchronization
coupled laser systems defining the phases both from a G
@similar to Eq.~20!# and a Hilbert transform. In the first cas
they distinguished a phase synchronization at 140 Hz, so
thing not seen when using the Hilbert transform. The diff
ence between both approaches, of course, does not imply
one measure is superior to the other. There are cases in w
one would like to restrict the analysis to a certain frequen
band and other cases in which one would prefer to hav
method that is parameter free, asgH . In fact, in Sec. II F we
will show that there is a close relation between both me
ods.

F. Relation between the phase synchronization measures

In Secs. II E we already mentioned that in some case
might be necessary to pre-filter the signals before apply
the Hilbert transform, while for the wavelet transform a ce
ter frequency~and frequency width! should be chosen be
forehand. In fact, the phases defined by the complex wav

e

3Instead of Eq.~20!, the authors of Refs.@15,33# used a Morlet

wavelet, i.e.,C(t)5eiv0t
•e2t2/2s2

, which satisfies the zero mea
admissibility condition of a wavelet only for larges. Since in our
case we will use a lows ~i.e., aC with few significant oscillations,
see Sec. II E!, an additional negative term is introduced. Whens is
small, disregarding this term can introduce spurious effects, e
cially if the signal to be analyzed has nonzero mean or low f
quency components. We do not need a normalization term in
~20! because we will be interested only in phases.
3-5
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transformfx
W and by the Hilbert transformfx

H are closely
related. Indeed, the real part ofWx(t) can be considered as
band-pass filtered signal. From it, we can form the Hilb
transform

W̃x~ t !5~H Re@wx# !~ t !, ~22!

and a phase by

Re@Wx#~ t !1 iW̃x~ t !5ARe@Wx#
H ~ t !eifRe@Wx#

H (t). ~23!

Let us now recall the definition of analytic signals. A com
plex function g(t) is an analytic signal if it satisfies
(Fg)(v)50;v,0 @35#. If g is analytic, then Im@g(t)#

5g̃(t)[(H Re@g#)(t). If a wavelet functionC is analytic,
then Wx(t)5(C+x)(t) is also analytic.4 In this caseW̃x(t)
[Im@Wx(t)# andfRe@Wx#

H (t)[fx
W(t), as defined in Eq.~21!.

Since the corrected Morlet wavelet of Eq.~20! is approxi-
mately analytic5 we havefRe@Wx#

H (t)>fx
W(t) to very good

approximation. Since as we mentioned,Wx(t) acts as a band
pass filter ofx(t), thenfx

H(t)>fx
W(t) as long as for the firs

one the signal is pre-filtered with the same wavelet funct
used for calculating the latter.

It is important to remark that the previous result is n
limited to complex Morlet wavelets and can be extended
other wavelet functions. In particular, from a real wave
function C(t) we can construct an analytic signal by usi
the Hilbert transform, i.e.,C8(t)[C(t)1 i (HC)(t), which
satisfies thatWx(t)5(C8+x)(t) is analytic. Then, from
Wx(t) we can define a phase and, e.g., study the phase
chronization with another signaly(t). The important advan-
tage is that we have the freedom of defining the phase f
a particular wavelet function, chosen from a dictionary
available wavelets according to the signal to be studied. T
can be interesting in cases in which defining a phase from
Hilbert transform is troublesome or if conventional filters a
not well suited.

III. DETAILS OF THE DATA

We will analyze the synchronization between two EE
channels in three different data sets@13#. The EEG signals
were obtained from electrodes placed on the left and r
frontal cortex of male adult WAG/Rij rats~a genetic model
for human absence epilepsy! @36#. Both signals were refer
enced to an electrode placed at the cerebellum; they w
filtered between 1 and 100 Hz and digitized at 200 Hz.

In a previous study@37#, the main objective of this setu
was to study changes in synchronization after unilateral
sions with ibothenic acid in the rostral pole of the reticu
thalamic nucleus. To achieve this, synchronization was

4Taking the Fourier transform we get (FWx)(v)
5@F(C+x)(t)#(v)5(FC)(v)•(Fx)(v)50;v,0, where we
used the Fourier convolution theorem and thatC is analytic.

5The Morlet wavelet tends to an analytic signal for largev0 and
low s @35#.
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assessed visually by looking for the simultaneous appeara
of spike discharges6 and then it was further quantified b
calculating both a linear cross correlation and the nonlin
interdependence measureH defined in the previous section
For the quantitative analysis, for each rat and condition,
data segments pre- and ten segments post-lesion were
lyzed, five of these segments corresponding to normal EE
and the other five containing spike discharges. The lengt
each data segment was 5 sec~i.e., 1000 data points!, this
being the largest length in which the signals contain
spikes could be visually judged as stationary. In all seven
studied, it was found that synchronization significantly d
creased after the lesions in the reticular thalamic nucl
@37#. Moreover, changes shown with the nonlinear synch
nizationH were more pronounced than those found with t
cross correlation. In the following section we will analyze
detail three of these EEG segments.

IV. SYNCHRONIZATION IN THE EEG DATA

In Fig. 1 we show the right and left channels of three
the ~pre-lesion! EEG signals described in the previous se
tion. The first case~example A! corresponds to a norma
EEG, and in the remaining two cases the signals have s
discharges~examples B and C!. Spikes usually appear due t
a local synchronization of neurons in the neighborhood
the electrode at which they are recorded. Since epileps
related to an abnormal synchronization in the brain, spi
are usually considered as a landmark of epileptic activity
localized appearance of spikes can delimit a zone with
normal discharges~but this will not necessarily be the ep
leptic focus!. On the contrary, if spikes are observed over t
whole set of electrodes, abnormal synchronization is said
be global. This concept seems to be obvious, but it has s
subtleties as we will see in the following. Let us analy
examples B and C. In both cases we see spikes at the lef
right electrodes. As we said, this will point towards a glob
synchronization behavior. However, a more detailed anal
shows that the spikes of example B are well synchroni
and in example C they are not. Indeed, in example C
spikes have slightly different time lags between the right a
left channels. This is of course not easily seen in a first sig
For making clear this point, we picked up the spikes of e
amples B and C and we noted the times of their maxim
for the right and left channels. We then calculated the
between the spikes in the two channels and its standard
viation with time. For the case B, the lag was very small a
stable, mainly between25 and 5 ms~i.e., of the order of the
sampling rate! and the standard deviation was of 4.7 ms. F
case C, the lag was much more unstable and covered a la
range~between220 and 50 ms!. In this last case the stan
dard deviation was of 14.9 ms. This shows that in exampl
the simultaneous appearance of spikes is correlated wi
global synchronization, while in example C bilateral spik
are not synchronized~i.e., we have local synchronization fo

6More properly, ‘‘spike-wave discharges,’’ but for simplicity w
will call them spikes in the remainder of the paper.
3-6
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TABLE I. Synchronization values for the three examples of Fig. 1.cxy : cross-correlation;Gxy : coherence
~at 9 Hz!; S(RuL), H(RuL), N(RuL), andS(LuR), H(LuR), N(LuR): nonlinear interdependences of the rig
electrode on the left and vice versa;gH andgH-Sh: phase synchronization indices defined from the Hilb
transform@Eqs.~18! and~19!, respectively#; gW andgW-Sh: phase synchronization indices defined from t
wavelet transform.

Example cxy Gxy S(RuL) S(LuR) H(RuL) H(LuR) N(RuL) N(LuR) gH gH2Sh gW gW2Sh

A 0.70 0.88 0.34 0.34 0.67 0.60 0.46 0.42 0.59 0.12 0.71 0.
B 0.79 0.86 0.35 0.28 1.11 1.30 0.63 0.69 0.71 0.18 0.80 0.
C 0.42 0.40 0.17 0.23 0.33 0.45 0.24 0.32 0.48 0.09 0.48 0.
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both channels, but no global synchronization!. In the case of
example A, due to its randomlike appearance it is difficult
estimate the level of synchronization by visual inspecti
However, we can already observe some patterns appea
simultaneously in both the left and right channels, th
showing some degree of interdependence.

Summarizing, we may say that example B seems the m
‘‘ordered’’ and synchronized. Among the other two e
amples, A looks definitely more disordered than C, but
closer look raises doubts and a formal analysis is asked

A. Linear measures

The second column of Table I shows the zero lag cro
correlation values for the three examples. As stated in
~1!, the calculation of the cross correlation requires a norm
ization of the data. We note that the tendency is in agreem
with what we expect from the arguments of the previo
section ~i.e., B.A.C). However, the difference betwee
cases A and B is relatively small. To get more insight, in F
3 we plot the cross correlation as a function of time sh
between the two channels. For the shifted versions, we u
periodic boundary conditions. For large enough shifts,
synchronization will in principle be lost and the values o
tained will give an estimation of the zero synchronizati
level, which we will call background level, and its fluctu
tion ~i.e., we use the shifted versions as surrogates!. We ob-
serve that the synchronization drops to a background le
for shifts larger than 50 data points~i.e., 250 ms!. The aver-
age of this background level is zero, but the fluctuations
quite large. Taking these fluctuations as an estimation of
error, we see that cross correlation does not distinguish
tween cases A and B.

We also note that the cross correlation shows oscillati
when shifting, most clearly in case B. These oscillatio
have the same period of the spikes and might put into do
the idea of considering the shifted signals as surrogates
therefore re-calculated the cross correlation but taking
left channel signals from other data segments of the sam
~for each rat we had five segments with spikes and five
normal EEG before the lesions in the thalamus! and corre-
sponding to the same condition~pre-lesion, normal EEG for
example A and EEG with spikes for examples B and C!. In
all cases, the background level and its fluctuations were
the order of those shown in Fig. 3. This indicates that shif
signals can be used as surrogates in spite of the oscillat

Figure 4 shows the spectral estimates for the three
amples. The two upper plots correspond to the power spe
04190
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of the right and left channels and the lower plot to the c
responding coherence function~3!. Each spectrum (Cxx ,
Cyy , and Cxy! was estimated using the Welch techniqu7

i.e., the data are divided intoM segments and thenCxx

5( i 51
M Cxx,i . We used half overlapped segments of 128 d

points tapered with a Hamming window. Example A has bo
in the right and left channels a power spectrum resemblin
power law distribution, with its main activity concentrate
between 1 and 10 Hz. The coherence function shows a
nificant interaction for this range of frequencies. Examples
and C show a more localized distribution in the power sp
trum. In both examples and for both channels there is a p
between 7 and 10 Hz and a harmonic at about 15 Hz
agreement with previously reported results@40#, these peaks
correspond to the spikes observed in Fig. 1. We can alre
see from the power spectra that the matching between r
and left channels in example B is much clearer than in
ample C. This is correlated with the larger coherence val
of example B, showing a significant synchronization for
most the whole frequency range. On the other hand, the
herence is much lower for example C and it seems to
significant only for low frequencies~up to 6 Hz!. As in the
case of the cross correlation, the coherence function fov
<11 Hz does not distinguish well between examples A a
B. There is only a difference for frequencies larger than
Hz, but this just reflects the lack of activity in this frequen
range for example A, whereas in example B it correspond
the synchronization between the high frequency harmon
of the spikes. In the third column of Table I we summari
the results obtained with the coherence function. The val
shown correspond to a frequency of 9 Hz, the main f
quency of the spikes in examples B and C.

B. Nonlinear interdependences

For calculating the nonlinear interdependence measureS,
H, and N between left and right electrodes we first reco
struct the state spaces of each signal using a time lagt52
and an embedding dimensionm510. We chose this time lag
in order to focus on frequencies lower than 50 Hz~i.e., half
the Nyquist frequency! and the choice of the embedding d
mension was in order to have the length of the embedd
vectors about the length of the spikes. We further chosk

7Without this segmentation technique, the coherence function@Eq.
~3!# would be always equal to 1.
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FIG. 3. Cross correlations between the rig
channel and shifted versions of the left one. No
that the difference between the three signals
of the order of fluctuations when shifting.
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510 nearest neighbors and a Theiler correction for temp
correlations@38# of T550. These parameters were chos
heuristically in order to maximize the sensitivity to the u
derlying synchronizations, but results were robust aga
changes of them. Table I summarizes the results for the t
examples. We will first discuss results with the nonline
measuresH and N. For both measures, example B has t
highest synchronization due to the presence of phase-lo
spike discharges and example C has a much smaller va
The synchronization of example A is between these valu
Again, it is interesting to remark that the nonlinear interd
pendence measures show the random looking signal of
ample A to be more synchronized than the one with spike
example C but less than the one in B, something surprisin
a first sight, and not clearly following from the cross corr
lation or the coherence as shown in Sec. IV A.

As done for the cross correlation, in Fig. 5 we also p
the two nonlinear synchronizationsH(RuL), N(RuL) and
H(LuR), N(LuR) as a function of time shifts between th
two channels. Again, the synchronization drops to a ba
04190
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ground level for shifts larger than 50 data points~i.e., 250
ms! and the background level is about zero. But in the c
of H andN we observe that the fluctuations are much sma
than those for the cross correlation. In fact, withH andN the
synchronization levels of the three cases are clearly se
rated, while the cross correlation does not distinguish
tween cases A and B. However, even though we expect
ample B to be the most ordered and synchronized of all~see
Sec. IV!, we do not have objective means for claiming th
the difference between examples A and B is significant.
the fact that nonlinear measures are able to separate the
examples might imply a higher sensitivity of these measu
in comparison with the linear ones, but it does not prove
We also observe some asymmetries inH and N, most pro-
nounced in case C. This might suggest that one of the sig
drives the other~i.e., the focus is on one side!. However, in
all cases this is of the order of the asymmetries seen with
shifted signals, thus not significant.

The case for the synchronization measureS is quite dif-
ferent. As seen in Fig. 5, for examples B and C there i
3-8



ft

PERFORMANCE OF DIFFERENT SYNCHRONIZATION . . . PHYSICAL REVIEW E65 041903
FIG. 4. Power spectra of the right and le
channels (Cxx andCyy ; upper plots! and the cor-
responding coherence function (Gxy ; lower plot!.
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clear asymmetry between right and left channels. In contr
to H and N, this asymmetry remains even for large tim
shifts between the two channels. Moreover, the backgro
level for the three examples is between 0.1 and 0.2 and
zero as withH. Thus the asymmetries observed in examp
B and C reflect more the individual properties of each ch
nel rather than a synchronization phenomenon.8 Neverthe-
less,H andN were clearly more robust in this respect.

Again, in order to check for the validity of the shifte
signals as surrogates, we recalculatedH, N, andSbut taking
the left channel signals from other data segments. As in
case of the cross-correlation, the background level and
fluctuations were of the order of those shown in Fig. 5.

8As pointed out in Ref.@11#, precisely such an asymmetry is e
pected if otherwise equal systems are coupled asymmetrically. T
if we expect both subsystemsa priori to have the same complexity
the asymmetry ofS is a hint to an asymmetric coupling.
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C. Hilbert phase synchronization

Prior to the estimation of the phase synchronization m
sures, each set of data was de-meaned. No further filte
was applied. Figure 6 shows the time evolution of the pha
~upper plot! and their distribution~middle plots! for the three
examples. From the time evolution of the phases we
already see that the phase of example B is clearly m
stable than the one of the other two examples~except in the
last half second, as we will detail later!. Examples A and C
are not so easily differentiated, but in the middle plots we
that the phase distribution of A is more localized than the o
of C. The values ofgH , indicated in Table I, are in agree
ment with these observations and with the general tende
observed with the other synchronization measures (B.A
.C). The phase synchronization index defined from the S
annon entropy@gH-Sh, defined in Eq.~19!# shows qualita-
tively similar results~see Table I!.

Since by applying the Hilbert transform we can calcula

us
3-9
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FIG. 5. Nonlinear interdepen
dencesS, H, and N between the
right channel and shifted version
of the left one. Note thatH andN
give similar results and can distin
guish the three cases. The measu
S shows an asymmetry that re
mains even after shifting. See tex
for details.
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an ‘‘instantaneous phase’’ of the signals, we expect
achieve a very good time resolution with the phase synch
nization measures derived from them. In the lowest plot
Fig. 6 we show the time evolution ofgH ~the plot forgW-Sh
was qualitatively similar!. Each point is calculated for a win
dow of 100 data points. In the first 3 sec we observe re
tively stable synchronization values for cases A and B.
example C we observe a larger variability due to a progr
sive phase desynchronization with a phase reentrainme
about 2.5 sec. For all the examples, synchronization le
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oscillate around the average values noted in Table I. After
third second the situation changes. Example C becomes m
synchronized than the other two examples and exampl
gets more desynchronized in the last half second. This i
agreement with what we see in the original signals in Fig
where it would have been hard to discern at first sight
visual inspection. The possibility to follow phase synchro
zation in time is in fact one advantage over the nonlin
interdependences, where a large number of data poin
required for reasonably stable results.
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FIG. 6. Time evolution of the~1:1! phase dif-
ferences, as defined from the Hilbert transfor
for the three examples of Fig. 1~upper plot!, the
corresponding distributions of the folded pha
differences~middle plots! and the time evolution
of the phase synchronization indexgH ~lower
plot!.
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D. Wavelet phase synchronization

In this case, for calculating the phase of each signal
used a corrected Morlet wavelet@Eq. ~20!# with w0 between
1 and 30 Hz ands5n/6v0, wheren is the number of sig-
nificant oscillations of the wavelet function at the 1% lev
We tested different values ofn but in the following, results
with n51 andn53 will be shown. Larger values ofn led to
a very bad time resolution as we detail later. We variedv0 at
1-Hz intervals and used zero padding border conditions.

The phase difference plots~at 10 Hz! were indeed very
similar to those shown in Fig. 6 and will not be discuss
further. Figure 7 shows the phase synchronization valuesgW
~left plots! andgW-Sh ~right plots! calculated with a wavele
function containing one significant oscillation (n51; upper
plots! and three significant oscillations (n53; lower plots!.
The values reported in Table I correspond to those obta
with n51 at a frequency of 10 Hz~the frequency of the
spikes in examples B and C, but results are qualitatively
same between 5 and 15 Hz!. These results are very similar t
those obtained with the Hilbert transform and show the sa
tendency~i.e., B.A.C). However, we also note that syn
04190
e

.

d

d

e

e

chronization values are a bit larger than the ones ofgH and
gH-Sh. As already shown in Sec. II F, the difference is due
the frequency band selectivity ofgW and gW-Sh. We there-
fore expect that a pre-filtering of the signals will increase
synchronization values calculated by using the Hilbert tra
form.

With n51 the three cases are well differentiated both
gW-Sh and gW. With n53 the difference between the syn
chronization levels of examples A and B is less clear forgW
and gW-Sh. This is due to the decrease in time resoluti
when increasing the number of significant oscillations of
mother function. Clearly, for the examples studied,n51 had
the best performance~for n.3 results get worse than forn
53). Notice the similarity between the lower plots forn
53, i.e., the ones with less resolution, with the coheren
plots shown in Fig. 4. This supports the usefulness of
phase synchronization measures defined from the wav
transform in comparison with traditional approaches. Fina
we should also remark that, as shown in Sec. II F, we are
limited to use Morlet wavelets, but we can rather choo
between several wavelet functions depending on the app
tion.
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E. Mutual information

Let us finally analyze the results obtained with mutu
information for the three EEG signals. For its calculation
used Eq.~13! with each Shannon entropy calculated
means of the correlation sum~using maximum norm! and the
finite samples correction of Eq.~16!. After each data set wa
normalized, for embedding the data we used a time lat
52 and embedding dimensions ranging fromm51 ~no em-
bedding! to m550. We further used a Theiler correction@38#
of ten data points and for calculating the correlation sum
varied the radiusd from 0.01 to 0.5 in steps of 0.01. In Fig
8 we show the results form51,2,3,4, the results for largerm
had a similar tendency~see below!. The difficult point when
calculating MI is to have a good estimation of the joint pro
abilities pi j

XY @see Eq.~12!#. These joint probabilities involve
a search of neighbors in a 2m-dimensional embedding spac
and therefore it is difficult to find enough neighbors and
a good statistic for largem. We expect this restriction to b
more relevant in the signals with spikes, due to their inh
mogeneous distribution in state space.

In line with the previous argument, due to the small nu
ber of data points we could not get robust estimates of s

FIG. 7. Phase synchronization indicesgW and gW-Sh defined
from the wavelet transform for two different wavelet functionsn
51 andn53).
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chronization in the three examples analyzed. As seen in
8, the answer to the question of which signal is more a
which is less synchronized dramatically depends on
choice ofm andd. We observe the same tendency as with
previous measures (B.A.C) only for m51 andd.0.15.

All previous analyses done in this paper show clear e
dence that example B has the highest synchronization.
m51 this is the case ford.0.05, form52 it occurs ford
.0.2, for m53 at d.0.45, and form54 it does not occur
for the range ofd shown. In fact, there is a crossing betwe
the synchronization values of examples A and B, that ta
place at largerd for largerm. This simply reflects the impos
sibility of finding neighbors in the 2m-dimensional state
space for smalld and/or largem. As mentioned before, we
expect this effect to be less restrictive for the homogene
distribution of example A. This explains why example A a
ways shows the highest synchronization for smalld.

V. CONCLUSIONS

We applied several linear and nonlinear measures of s
chronization to three typical EEG signals. Besides mut
information, which was not robust due to the low number
data points, all these measures gave a similar tendency in
synchronization levels. A similar analysis would have be
impossible by visual inspection. Moreover, in one case w
bilateral spikes, synchronization was much lower than
pected at a first sight. Therefore we claim that the quan
cation of synchronization between different EEG signals c
complement the conventional visual analysis and can e
be of clinical value. In particular, this is very important fo
the study of epilepsy@9–11,17# and for the study of brain
processes involving a synchronous activation of different
eas or structures in the brain.

In the last years, mainly two types of nonlinear synch
nization measures were proposed, namely, the ones base
phase relationships~phase synchronization! and the ones
based on nonlinear interdependences~generalized synchroni
zation!. It is interesting to remark that in our study with re
data these measures gave similar results, despite their d
ent definitions and their sensitivity to different characterist
of the signals. We also show a close similarity between ph
synchronization measures based on the Hilbert and on
wavelet transform. In the particular case of the last one,
generalize its definition to different wavelet functions th
will be more or less suitable according to the problem un
investigation.

We validated the results obtained with the new nonlin
measures by comparing them with those obtained with tra
tional methods. All measures ranked the synchronization
els of the three examples in the same way. However,
separation between them was more pronounced with non
ear measures. Although we do not have objective means
claiming that the difference between the synchronization
the signals is significant, this might suggest a higher se
tivity of nonlinear measures. Although these results sho
not be automatically extended to other signals and proble
they also support the value of nonlinear synchronizat
measures in real data analysis.
3-12
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FIG. 8. Mutual information calculated with
embedding dimensionsm51,2,3,4 and varying
radius (d) of the correlation sum.
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